Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres

Base de données
Sujet Principal
Année
Type de document
Gamme d'année
1.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.10.27.357731

Résumé

Cytokine storm resulting from a heightened inflammatory response is a prominent feature of severe COVID-19 disease. This inflammatory response results from assembly/activation of a cell-intrinsic defense platform known as the inflammasome. We report that the SARS-CoV-2 viroporin encoded by ORF3a activates the NLRP3 inflammasome, the most promiscuous of known inflammasomes. ORF3a triggers IL-1 beta expression via NFkB, thus priming the inflammasome while also activating it via ASC-dependent and -independent modes. ORF3a-mediated inflammasome activation requires efflux of potassium ions and oligomerization between NEK7 and NLRP3. With the selective NLRP3 inhibitor MCC950 able to block ORF3a-mediated inflammasome activation and key ORF3a residues needed for virus release and inflammasome activation conserved in SARS-CoV-2 isolates across continents, ORF3a and NLRP3 present prime targets for intervention.


Sujets)
COVID-19
2.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.10.26.356048

Résumé

Activation of the RIG-I-like receptors, RIG-I and MDA5, establishes an antiviral state by upregulating interferon (IFN)-stimulated genes (ISGs). Among these is ISG15 whose mechanistic roles in innate immunity still remain enigmatic. Here we report that ISGylation is essential for antiviral IFN responses mediated by the viral RNA sensor MDA5. ISG15 conjugation to the caspase activation and recruitment domains of MDA5 promotes the formation of higher-order assemblies of MDA5 and thereby triggers activation of innate immunity against a range of viruses including coronaviruses, flaviviruses and picornaviruses. The ISG15-dependent activation of MDA5 is antagonized through direct de-ISGylation mediated by the papain-like protease (PLpro) of SARS-CoV-2, a recently emerged coronavirus that causes the COVID-19 pandemic. Our work demonstrates a crucial role for ISG15 in the MDA5-mediated antiviral response, and also identifies a novel immune evasion mechanism of SARS-CoV-2, which may be targeted for the development of new antivirals and vaccines to combat COVID-19.


Sujets)
COVID-19
SÉLECTION CITATIONS
Détails de la recherche